Maquinas de estado finitos

Una Maguinas de estado finitos (FSM, por sus siglas en inglés) es un modelo
matematico compuesto por:

» Estados: Representan las distintas “modos” en los que puede estar el
NPC (por ejemplo: patrullando, persiguiendo, atacando, huyendo).

« Transiciones: Reglas que definen cuando y como el NPC cambia de un
estado a otro (por ejemplo: si ve al jugador pasa de patrullando a
persiguiendo).

» Eventos o condiciones: Son los disparadores de las transiciones (como la
distancia al jugador, recibir dano, perder de vista al objetivo, etc.).

« Acciones: Lo que el NPC hace mientras esta en un estado determinado
(animaciones, movimientos, sonidos, etc.).

:Como se modela?

Las FSM pueden implementarse utilizando simples estructuras condicionales if-
then-else (o switch/case) es lo que se conoce como “FSM implicita”. Este tipo
de FSM funcionan para casos simples, pero no escala bien y puede volverse
dificil de mantener, depurar o extender.

Existen otras formas mas robustas, modulares y limpias de implementar las
FSM, uno de las técnicas mas usadas es la que utiliza el modelo orientado a
objetos donde cada estado es una clase, y las transiciones se manejan dentro
de esas clases.

Las ventajas de este modelo es que cada estado encapsula su légica lo que lo
hace facil de extender ya que afadir un nuevo estado solo requiere una nueva
clase y vita grandes bloques de if/else que hacen el cddigo ilegible.

Componentes de la FSM

class State:

Clase base para todos los estados del NPC. Cada estado define qué hacer al
entrar, ejecutar y salir.

def enter(self, npc): - Accién al entrar en el estado.

def execute(self, npc): - Accién principal que se ejecuta cada
frame.

def exit(self, npc): - Accidn al salir del estado.

def get next state class(self, event): - Devuelve la clase del
estado siguiente segun el evento recibido.

class StateMachine

Esta clase implementa la Maquina de estados que gestiona el estado actual de
un NPC.

Nuevos estados

Para definir nuevos estados se define una nueva clase que hereda de State:

class TimidoPatrolState(State):

Estado en el que el NPC timido patrulla por el borde.

Transiciones entre estados

Hay que definir para cada estado un diccionario denominado transitions con el
evento que provoca una transicién y a qué estado se mueve.

Definir transiciones para NPCTimido
TimidoPatrolState.transitions = {"player seen": TimidoChaseState}

Ejemplo

En esta imagen se muestra el comportamiento de tres NPCs distintos
modelados usando FSM. Los estados se muestran en azul los eventos que
provocan las transiciones entre estados aparecen sobre las flechas.

FSM - NPC Normal

ChaseState

PatrolState
FSM - NPC Timido
TimidoPatrolState
/ \—
Y
N
/@@
fh \o@&)
X/ [
/Q 3
’0\
4
9
©
TimidoChaseState

o

< TimidoAlertState

1)

i

(o]

‘O

o

o

n

1) (‘(

o2
A | s,aKe/

TimidoFleeState

FSM - NPC Guardia

GuardChaseState

Is0, f/s/fe/d

GuardnvestigatingState

3uop” uonehiIsanul

alert_received

Puedes ver y ejecutar el ejemplo en este script de python

Tracedump:
12pt

newBaseSize:

newBaseSizeInPt: 12

https://roure.act.uji.es/wiki/lib/exe/fetch.php?media=public:vj1231:fsm:fsm.v3.tgz

	Máquinas de estado finitos
	¿Cómo se modela?
	Componentes de la FSM
	class State:
	class StateMachine
	Nuevos estados
	Transiciones entre estados

	Ejemplo

