
Máquinas de estado finitos
Una Máquinas de estado finitos (FSM, por sus siglas en inglés) es un modelo
matemático compuesto por:

• Estados: Representan las distintas “modos” en los que puede estar el
NPC (por ejemplo: patrullando, persiguiendo, atacando, huyendo).

• Transiciones: Reglas que definen cuándo y cómo el NPC cambia de un
estado a otro (por ejemplo: si ve al jugador pasa de patrullando a
persiguiendo).

• Eventos o condiciones: Son los disparadores de las transiciones (como la
distancia al jugador, recibir daño, perder de vista al objetivo, etc.).

• Acciones: Lo que el NPC hace mientras está en un estado determinado
(animaciones, movimientos, sonidos, etc.).

¿Cómo se modela?
Las FSM pueden implementarse utilizando simples estructuras condicionales if-
then-else (o switch/case) es lo que se conoce como “FSM implícita”. Este tipo
de FSM funcionan para casos simples, pero no escala bien y puede volverse
difícil de mantener, depurar o extender.
Existen otras formas más robustas, modulares y limpias de implementar las
FSM, uno de las técnicas más usadas es la que utiliza el modelo orientado a
objetos donde cada estado es una clase, y las transiciones se manejan dentro
de esas clases.
Las ventajas de este modelo es que cada estado encapsula su lógica lo que lo
hace fácil de extender ya que añadir un nuevo estado solo requiere una nueva
clase y vita grandes bloques de if/else que hacen el código ilegible.

Componentes de la FSM
class State:
Clase base para todos los estados del NPC. Cada estado define qué hacer al
entrar, ejecutar y salir.
def enter(self, npc): → Acción al entrar en el estado.
def execute(self, npc): → Acción principal que se ejecuta cada
frame.
def exit(self, npc): → Acción al salir del estado.
def get_next_state_class(self, event): → Devuelve la clase del
estado siguiente según el evento recibido.

class StateMachine
Esta clase implementa la Máquina de estados que gestiona el estado actual de
un NPC.

Nuevos estados
Para definir nuevos estados se define una nueva clase que hereda de State:

class TimidoPatrolState(State):
 """
 Estado en el que el NPC tímido patrulla por el borde.
 """
...

Transiciones entre estados
Hay que definir para cada estado un diccionario denominado transitions con el
evento que provoca una transición y a qué estado se mueve.

Definir transiciones para NPCTimido
TimidoPatrolState.transitions = {"player_seen": TimidoChaseState}

Ejemplo
En esta imagen se muestra el comportamiento de tres NPCs distintos
modelados usando FSM. Los estados se muestran en azul los eventos que
provocan las transiciones entre estados aparecen sobre las flechas.

Puedes ver y ejecutar el ejemplo en este script de python

Tracedump:
newBaseSize: 12pt
newBaseSizeInPt: 12

https://roure.act.uji.es/wiki/lib/exe/fetch.php?media=public:vj1231:fsm:fsm.v3.tgz

	Máquinas de estado finitos
	¿Cómo se modela?
	Componentes de la FSM
	class State:
	class StateMachine
	Nuevos estados
	Transiciones entre estados

	Ejemplo

